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Mixed cyclisations have been performed to give phthalocyanine–naphthalocyanine hybrids bearing sol-
ubilising substituents. Reactivity differences between the two phthalonitrile precursors result in ineffi-
cient mixed-macrocyclisation under standard, non-templating conditions leading to predominant
formation of symmetrical phthalocyanine. Templated mixed-macrocyclisation leads to the hybrids. How-
ever, the reaction proceeds with unexpected selectivity with only one of the possible 2:2 products
observed.

� 2009 Elsevier Ltd. All rights reserved.
Phthalocyanines are important molecular materials because of
the potential for such molecules to form the functional component
of optoelectronic devices.1,2 Their use in such applications typically
requires a combination of molecular (optical absorption/band gap,
redox, etc.) and bulk (processability, self-assembly, mesophase for-
mation, etc.) properties. For this reason a large number of phthalo-
cyanine derivatives have been prepared. Some phthalocyanines are
discotic liquid crystals,3 an important sub-class of liquid crystals to
emerge since their discovery around 30 years ago.4 Phthalocyanine
itself can be modified extensively to tune both molecular and bulk
properties. Such modifications can focus on a combination of var-
iation of the (organic) core structure (e.g., introduction of substit-
uents to change absorption and/or solubility properties) and
central metal ion (more than 70 elements can be introduced).

Extension of the aromatic core has also been investigated and is
known to give rise to perturbed properties. In particular, extension
of the p-system of the molecule results in longer wavelength elec-
tronic absorption (red-shifted spectra) and a number of fused and
modified core structures are now known where, for example, the
benzene units of parent phthalocyanines are replaced by naphtha-
lene, anthracene or perylene.5 The intense and tunable electronic
absorption of phthalocyanines and related macrocycles has led to
investigation of their potential as solar light collectors in energy
conversion systems, most notably photovoltaic devices.6 Ruthe-
nium derivatives have proved particularly promising and we have
recently reported convenient methods for controlled synthesis of
ruthenated phthalocyanines bearing either one or two replaceable
axial ligands.7
ll rights reserved.
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An ideal solar collector should absorb across the full range of
incident irradiation and we reasoned that a simple strategy to
broaden and extend the absorption profile of phthalocyanine chro-
mophores would be to prepare p-extended derivatives in which
the core symmetry is broken.8 Our main target molecules were
3:1 phthalocyanine–naphthalocyanine hybrids 1 and 2, designed
to have solubilising alkyl substituents on the three benzenoid
units. The remaining naphthalene unit was designed to incorporate
either a carboxylic acid functional group (to promote binding to
inorganic substrates employed in photovoltaic cells) or a tert-butyl
group (Fig. 1).

Mixed cyclisation employing a 3:1 ratio of 3,6-dioctylphthalo-
nitrile 3 and 6-tert-butylnaphthalene-2,3-dicarbonitrile 4 pro-
ceeded smoothly and as expected under the standard conditions
commonly employed for synthesis of metal-free phthalocyanines
(reflux in pentanol, lithium). Work-up of the crude mixture with
acetic acid gave a mixture of the metal-free phthalocyanine prod-
ucts from which the symmetric octa-alkyl phthalocyanine and 3:1
hybrid 59 (5%) were isolated by careful column chromatography
(Scheme 1). Hybrid 5 was converted to its zinc derivative 6 by
treatment with zinc acetate, and to its ruthenium carbonyl deriva-
tive 7 by following our previously reported method.7 Absorption
spectra are red shifted by around 20 nm compared to the corre-
sponding symmetrical phthalocyanines and cover a broader range
(e.g., for 5, absorption covers the range 575–780 nm). Further char-
acterisation of metal-free hybrid 5 surprisingly revealed that it
exhibits a stable columnar mesophase below 242 �C. The parent
symmetrical phthalocyanines are well known to form liquid crys-
tals,10 but breaking the molecular symmetry and introduction of
the bulky tert-butyl group are expected to destabilise or destroy
the mesophase behaviour.
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Figure 1. Target phthalocyanine/naphthalocyanine hybrids.
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Scheme 1. Synthesis of tert-butyl-substituted 3:1 hybrids and metallation.
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Attempts to prepare the corresponding 3:1 hybrid between pht-
halonitrile 3 and naphthalonitrile 8 proved to be less straightfor-
ward. Indeed, under the same reaction conditions (3:8 = 3:1, Li/
pentanol/reflux) no 3:1 hybrid was formed. Instead, symmetrical
phthalocyanine (plus a trace of the symmetrical naphthalocyanine)
were the only macrocyclic products observed. This result implies
that there exists a significant reactivity difference between the
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Scheme 2. Synthesis of metal-free 3:1 hybrids bearing
two substrates resulting in preferential consumption of the pht-
halonitrile to give symmetrical phthalocyanine as the dominant
product.

The phthalonitrile/naphthalonitrile ratio was changed
(3:8 = 2:1) in order to overcome this reactivity difference and the
3:1 hybrid was indeed obtained (Scheme 2). Characterisation re-
vealed that the material isolated was not the expected ester 10
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(transesterification is expected under the reaction conditions) but
rather the carboxylic acid 9. Esterification of 9 was achieved
smoothly by treatment with iodopentane/DBU in THF, and the
resulting ester 10 metallated as before.

Mixed cyclisations under templating conditions11 gave different
results. Cyclisation of a 3:1 mixture of 3:8 using zinc as the tem-
plate [Zn(OAc)2/DBU/pentanol] led to a mixture of hybrids in a ra-
tio closer to that expected statistically. Under these conditions the
ester products were isolated. Careful column chromatography al-
lowed their separation and sufficient quantity of the 2:2 hybrid
was obtained to permit detailed characterisation. We expected to
obtain the product as a mixture of regioisomers 14–17 (the other
symmetric adjacent isomer is not shown) but 1H NMR spectros-
copy revealed that, somewhat surprisingly, a single isomer had
been isolated. There is no evidence for the presence of any signifi-
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Scheme 3. Template synthesis of phthal
cant quantity of other 2:2 hybrids. The important region of the 1H
NMR spectrum, along with four of five possible isomers 14–17 is
shown in Scheme 3. Isomers 14–16 can be eliminated on symme-
try grounds (for each, three singlets and an AB pattern are expected
for the naphthalene protons) leaving 17 as the only possible
product.

In conclusion, mixed cyclisations have been performed to give
phthalocyanine–naphthalocyanine hybrids bearing solubilising
substituents. The outcome of the reactions, under standard condi-
tions, depends on the relative reactivity of each dinitrile precursor.
Reactivity differences between the two phthalonitrile precursors
can therefore result in inefficient mixed-macrocyclisation under
standard, non-templating conditions leading to predominant for-
mation of symmetrical phthalocyanine. Templated mixed-macro-
cyclisation overcomes the reactivity difference to a large extent
9.49.4 7.67.67.87.88.48.48.68.688

N NN

N N

N NN

R

R

Zn

15

CO2Pe

N NN

N N

N NN

RR

Zn

PeO2C

16

R

R

CO2Pe

7.67.67.87.88.08.08.28.2

N NN

N N

N NN

R

R

R

R

Zn

max = 701 nm

+ 2:2 hybrid(s)

N NN

N N

N NN

RR

CO2Pe

Zn

CO2Pe

PeO2C

14-17

18
<0.5% λmax = 
728 nm

~2% λmax = 721 nm

ocyanine/naphthalocyanine hybrids.



3016 A. N. Cammidge et al. / Tetrahedron Letters 50 (2009) 3013–3016
and leads to the hybrids. However, in our case the reaction pro-
ceeds with unexpected selectivity with only one of the possible
2:2 products observed.
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